• <blockquote id="a6oys"></blockquote>
  • <tt id="a6oys"></tt>
  • Paul's Online Notes
    Paul's Online Notes
    Home / Algebra / Systems of Equations
    Show General Notice Show Mobile Notice Show All Notes Hide All Notes
    General Notice

    I apologize for the outage on the site yesterday and today. Lamar University is in Beaumont Texas and Hurricane Laura came through here and caused a brief power outage at Lamar. Things should be up and running at this point and (hopefully) will stay that way, at least until the next hurricane comes through here which seems to happen about once every 10-15 years. Note that I wouldn't be too suprised if there are brief outages over the next couple of days as they work to get everything back up and running properly. I apologize for the inconvienence.

    August 27, 2020

    Mobile Notice
    You appear to be on a device with a "narrow" screen width (i.e. you are probably on a mobile phone). Due to the nature of the mathematics on this site it is best views in landscape mode. If your device is not in landscape mode many of the equations will run off the side of your device (should be able to scroll to see them) and some of the menu items will be cut off due to the narrow screen width.

    Chapter 7 : Systems of Equations

    This is a fairly short chapter devoted to solving systems of equations. A system of equations is a set of equations each containing one or more variable.

    We will focus exclusively on systems of two equations with two unknowns and three equations with three unknowns although the methods looked at here can be easily extended to more equations. Also, with the exception of the last section we will be dealing only with systems of linear equations.

    Here is a list of the topics in this section.

    Linear Systems with Two Variables – In this section we will solve systems of two equations and two variables. We will use the method of substitution and method of elimination to solve the systems in this section. We will also introduce the concepts of inconsistent systems of equations and dependent systems of equations.

    Linear Systems with Three Variables – In this section we will work a couple of quick examples illustrating how to use the method of substitution and method of elimination introduced in the previous section as they apply to systems of three equations.

    Augmented Matrices – In this section we will look at another method for solving systems. We will introduce the concept of an augmented matrix. This will allow us to use the method of Gauss-Jordan elimination to solve systems of equations. We will use the method with systems of two equations and systems of three equations.

    More on the Augmented Matrix – In this section we will revisit the cases of inconsistent and dependent solutions to systems and how to identify them using the augmented matrix method.

    Nonlinear Systems – In this section we will take a quick look at solving nonlinear systems of equations. A nonlinear system of equations is a system in which at least one of the equations is not linear, i.e. has degree of two or more. Note as well that the discussion here does not cover all the possible solution methods for nonlinear systems. Solving nonlinear systems is often a much more involved process than solving linear systems.

    亚洲欧美中文日韩视频 - 视频 - 在线观看 - 影视资讯 - av网 <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <文本链> <文本链> <文本链> <文本链> <文本链> <文本链>