• <blockquote id="a6oys"></blockquote>
  • <tt id="a6oys"></tt>
  • Paul's Online Notes
    Paul's Online Notes
    Home / Calculus II / Series & Sequences / Binomial Series
    Show General Notice Show Mobile Notice Show All Notes Hide All Notes
    General Notice

    I apologize for the outage on the site yesterday and today. Lamar University is in Beaumont Texas and Hurricane Laura came through here and caused a brief power outage at Lamar. Things should be up and running at this point and (hopefully) will stay that way, at least until the next hurricane comes through here which seems to happen about once every 10-15 years. Note that I wouldn't be too suprised if there are brief outages over the next couple of days as they work to get everything back up and running properly. I apologize for the inconvienence.

    Paul
    August 27, 2020

    Mobile Notice
    You appear to be on a device with a "narrow" screen width (i.e. you are probably on a mobile phone). Due to the nature of the mathematics on this site it is best views in landscape mode. If your device is not in landscape mode many of the equations will run off the side of your device (should be able to scroll to see them) and some of the menu items will be cut off due to the narrow screen width.

    Section 4-18 : Binomial Series

    In this final section of this chapter we are going to look at another series representation for a function. Before we do this let’s first recall the following theorem.

    Binomial Theorem

    If \(n\) is any positive integer then,

    \[\begin{align*}{\left( {a + b} \right)^n} & = \sum\limits_{i = 0}^n {n \choose i} {a^{n - i}}\,{b^i} \,\\ & = {a^n} + n{a^{n - 1}}b + \frac{{n\left( {n - 1} \right)}}{{2!}}{a^{n - 2}}{b^2} + \cdots + na{b^{n - 1}} + {b^n}\end{align*}\]

    where,

    \[\begin{align*}{n \choose i} & = \frac{{n\left( {n - 1} \right)\left( {n - 2} \right) \cdots \left( {n - i + 1} \right)}}{{i!}}\hspace{0.25in}i = 1,2,3, \ldots n\\ {n \choose 0} & = 1\end{align*}\]

    This is useful for expanding \({\left( {a + b} \right)^n}\) for large \(n\) when straight forward multiplication wouldn’t be easy to do. Let’s take a quick look at an example.

    Example 1 Use the Binomial Theorem to expand \({\left( {2x - 3} \right)^4}\)
    Show Solution

    There really isn’t much to do other than plugging into the theorem.

    \[\begin{align*}{\left( {2x - 3} \right)^4} & = \sum\limits_{i = 0}^4 { {4 \choose i} \,{{\left( {2x} \right)}^{4 - i}}\,{{\left( { - 3} \right)}^i}} \\ & = {4 \choose 0}{\left( {2x} \right)^4} + {4 \choose 1}{\left( {2x} \right)^3}\left( { - 3} \right) + {4 \choose 2}{\left( {2x} \right)^2}{\left( { - 3} \right)^2} + {4 \choose 3}\left( {2x} \right){\left( { - 3} \right)^3} + {4 \choose 4}{\left( { - 3} \right)^4}\\ & = {\left( {2x} \right)^4} + 4{\left( {2x} \right)^3}\left( { - 3} \right) + \frac{{4\left( 3 \right)}}{2}{\left( {2x} \right)^2}{\left( { - 3} \right)^2} + 4\left( {2x} \right){\left( { - 3} \right)^3} + {\left( { - 3} \right)^4}\\ & = 16{x^4} - 96{x^3} + 216{x^2} - 216x + 81\end{align*}\]

    Now, the Binomial Theorem required that \(n\) be a positive integer. There is an extension to this however that allows for any number at all.

    Binomial Series

    If \(k\) is any number and \(\left| x \right| < 1\) then,

    \[\begin{align*}{\left( {1 + x} \right)^k} & = \sum\limits_{n = 0}^\infty { {k \choose n} {x^n}} \,\\ & = 1 + kx + \frac{{k\left( {k - 1} \right)}}{{2!}}{x^2} + \frac{{k\left( {k - 1} \right)\left( {k - 2} \right)}}{{3!}}{x^3} + \cdots \end{align*}\]

    where,

    \[\begin{align*}{k \choose n} & = \frac{{k\left( {k - 1} \right)\left( {k - 2} \right) \cdots \left( {k - n + 1} \right)}}{{n!}}\hspace{0.25in}n = 1,2,3, \ldots \\ {k \choose 0} & = 1\end{align*}\]

    So, similar to the binomial theorem except that it’s an infinite series and we must have \(\left| x \right| < 1\) in order to get convergence.

    Let’s check out an example of this.

    Example 2 Write down the first four terms in the binomial series for \(\sqrt {9 - x} \)
    Show Solution

    So, in this case \(k = \frac{1}{2}\) and we’ll need to rewrite the term a little to put it into the form required.

    \[\sqrt {9 - x} = 3{\left( {1 - \frac{x}{9}} \right)^{\frac{1}{2}}} = 3{\left( {1 + \left( { - \frac{x}{9}} \right)} \right)^{\frac{1}{2}}}\]

    The first four terms in the binomial series is then,

    \[\begin{align*}\sqrt {9 - x} & = 3{\left( {1 + \left( { - \frac{x}{9}} \right)} \right)^{\frac{1}{2}}}\\ & = 3\sum\limits_{n = 0}^\infty { {\frac{1}{2} \choose n} {{\left( { - \frac{x}{9}} \right)}^n}} \,\\ & = 3\left[ {1 + \left( {\frac{1}{2}} \right)\left( { - \frac{x}{9}} \right) + \frac{{\frac{1}{2}\left( { - \frac{1}{2}} \right)}}{2}{{\left( { - \frac{x}{9}} \right)}^2} + \frac{{\frac{1}{2}\left( { - \frac{1}{2}} \right)\left( { - \frac{3}{2}} \right)}}{6}{{\left( { - \frac{x}{9}} \right)}^3} + \cdots } \right]\\ & = 3 - \frac{x}{6} - \frac{{{x^2}}}{{216}} - \frac{{{x^3}}}{{3888}} - \cdots \end{align*}\]
    亚洲欧美中文日韩视频 - 视频 - 在线观看 - 影视资讯 - av网 <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <文本链> <文本链> <文本链> <文本链> <文本链> <文本链>