• <blockquote id="a6oys"></blockquote>
• <tt id="a6oys"></tt>
• Paul's Online Notes
Home / Calculus III / Partial Derivatives / Differentials
Show General Notice Show Mobile Notice Show All Notes Hide All Notes
General Notice

I apologize for the outage on the site yesterday and today. Lamar University is in Beaumont Texas and Hurricane Laura came through here and caused a brief power outage at Lamar. Things should be up and running at this point and (hopefully) will stay that way, at least until the next hurricane comes through here which seems to happen about once every 10-15 years. Note that I wouldn't be too suprised if there are brief outages over the next couple of days as they work to get everything back up and running properly. I apologize for the inconvienence.

Paul
August 27, 2020

Mobile Notice
You appear to be on a device with a "narrow" screen width (i.e. you are probably on a mobile phone). Due to the nature of the mathematics on this site it is best views in landscape mode. If your device is not in landscape mode many of the equations will run off the side of your device (should be able to scroll to see them) and some of the menu items will be cut off due to the narrow screen width.

### Section 2-5 : Differentials

This is a very short section and is here simply to acknowledge that just like we had differentials for functions of one variable we also have them for functions of more than one variable. Also, as we’ve already seen in previous sections, when we move up to more than one variable things work pretty much the same, but there are some small differences.

Given the function $$z = f\left( {x,y} \right)$$ the differential $$dz$$ or $$df$$ is given by,

$dz = {f_x}\,dx + {f_y}\,dy\hspace{0.5in}{\mbox{or}}\hspace{0.5in}df = {f_x}\,dx + {f_y}\,dy$

There is a natural extension to functions of three or more variables. For instance, given the function $$w = g\left( {x,y,z} \right)$$ the differential is given by,

$dw = {g_x}\,dx + {g_y}\,dy + {g_z}\,dz$

Let’s do a couple of quick examples.

Example 1 Compute the differentials for each of the following functions.
1. $$z = {{\bf{e}}^{{x^2} + {y^2}}}\tan \left( {2x} \right)$$
2. $$\displaystyle u = \frac{{{t^3}{r^6}}}{{{s^2}}}$$
Show All Solutions Hide All Solutions
a $$z = {{\bf{e}}^{{x^2} + {y^2}}}\tan \left( {2x} \right)$$ Show Solution

There really isn’t a whole lot to these outside of some quick differentiation. Here is the differential for the function.

$dz = \left( {2x{{\bf{e}}^{{x^2} + {y^2}}}\tan \left( {2x} \right) + 2{{\bf{e}}^{{x^2} + {y^2}}}{{\sec }^2}\left( {2x} \right)} \right)dx + 2y{{\bf{e}}^{{x^2} + {y^2}}}\tan \left( {2x} \right)dy$

b $$\displaystyle u = \frac{{{t^3}{r^6}}}{{{s^2}}}$$ Show Solution

Here is the differential for this function.

$du = \frac{{3{t^2}{r^6}}}{{{s^2}}}dt + \frac{{6{t^3}{r^5}}}{{{s^2}}}dr - \frac{{2{t^3}{r^6}}}{{{s^3}}}ds$

Note that sometimes these differentials are called the total differentials.

亚洲欧美中文日韩视频 - 视频 - 在线观看 - 影视资讯 - av网 <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <文本链> <文本链> <文本链> <文本链> <文本链> <文本链>