• <blockquote id="a6oys"></blockquote>
  • <tt id="a6oys"></tt>
  • Paul's Online Notes
    Paul's Online Notes
    Home / Algebra Trig Review / Algebra / Rationalizing
    Show General Notice Show Mobile Notice Show All Notes Hide All Notes
    General Notice

    I apologize for the outage on the site yesterday and today. Lamar University is in Beaumont Texas and Hurricane Laura came through here and caused a brief power outage at Lamar. Things should be up and running at this point and (hopefully) will stay that way, at least until the next hurricane comes through here which seems to happen about once every 10-15 years. Note that I wouldn't be too suprised if there are brief outages over the next couple of days as they work to get everything back up and running properly. I apologize for the inconvienence.

    Paul
    August 27, 2020

    Mobile Notice
    You appear to be on a device with a "narrow" screen width (i.e. you are probably on a mobile phone). Due to the nature of the mathematics on this site it is best views in landscape mode. If your device is not in landscape mode many of the equations will run off the side of your device (should be able to scroll to see them) and some of the menu items will be cut off due to the narrow screen width.

    Rationalizing

    Rationalize each of the following. Show All Solutions Hide All Solutions

    1. \(\frac{{3xy}}{{\sqrt x + \sqrt y }}\)
      Show Solution

      This is the typical rationalization problem that you will see in an algebra class. In these kinds of problems you want to eliminate the square roots from the denominator. To do this we will use

      \[\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}\]

      So, to rationalize the denominator (in this case, as opposed to the next problem) we will multiply the numerator and denominator by \(\sqrt x - \sqrt y \). Remember, that to rationalize we simply multiply numerator and denominator by the term containing the roots with the sign between them changed. So, in this case, we had \(\sqrt x + \sqrt y \) and so we needed to change the “+” to a “-”.

      Now, back to the problem. Here’s the multiplication.

      \[\frac{{3xy}}{{\left( {\sqrt x + \sqrt y } \right)}}\;\;\frac{{\left( {\sqrt x - \sqrt y } \right)}}{{\left( {\sqrt x - \sqrt y } \right)}} = \frac{{3xy\left( {\sqrt x - \sqrt y } \right)}}{{x - y}}\]

      Note that the results will often be “messier” than the original expression. However, as you will see in your calculus class there are certain problems that can only be easily worked if the problem has first been rationalized.

      Unfortunately, sometimes you have to make the problem more complicated in order to work with it.

    2. \(\frac{{\sqrt {t + 2} - 2}}{{{t^2} - 4}}\)
      Show Solution

      In this problem we’re going to rationalize the numerator. Do NOT get too locked into always rationalizing the denominator. You will need to be able to rationalize the numerator occasionally in a calculus class. It works in pretty much the same way however.

      \begin{align*}\frac{{\left( {\sqrt {t + 2} - 2} \right)}}{{\left( {{t^2} - 4} \right)}}\;\;\frac{{\left( {\sqrt {t + 2} + 2} \right)}}{{\left( {\sqrt {t + 2} + 2} \right)}} & = \frac{{t + 2 - 4}}{{\left( {{t^2} - 4} \right)\left( {\sqrt {t + 2} + 2} \right)}}\\ & = \frac{{t - 2}}{{\left( {t - 2} \right)\left( {t + 2} \right)\left( {\sqrt {t + 2} + 2} \right)}}\\ & = \frac{1}{{\left( {t + 2} \right)\left( {\sqrt {t + 2} + 2} \right)}}\end{align*}

      Notice that, in this case there was some simplification we could do after the rationalization. This will happen occasionally.

    亚洲欧美中文日韩视频 - 视频 - 在线观看 - 影视资讯 - av网 <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <文本链> <文本链> <文本链> <文本链> <文本链> <文本链>